Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 71: 103091, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38412803

RESUMEN

Low back pain (LBP) is a pervasive global health concern, primarily associated with intervertebral disc (IVD) degeneration. Although oxidative stress has been shown to contribute to IVD degeneration, the underlying mechanisms remain undetermined. This study aimed to unravel the role of superoxide dismutase 2 (SOD2) in IVD pathogenesis and target oxidative stress to limit IVD degeneration. SOD2 demonstrated a dynamic regulation in surgically excised human IVD tissues, with initial upregulation in moderate degeneration and downregulation in severely degenerated IVDs. Through a comprehensive set of in vitro and in vivo experiments, we found a suggestive association between excessive mitochondrial superoxide, cellular senescence, and matrix degradation in human and mouse IVD cells. We confirmed that aging and mechanical stress, established triggers for IVD degeneration, escalated mitochondrial superoxide levels in mouse models. Critically, chondrocyte-specific Sod2 deficiency accelerated age-related and mechanical stress-induced disc degeneration in mice, and could be attenuated by ß-nicotinamide mononucleotide treatment. These revelations underscore the central role of SOD2 in IVD redox balance and unveil potential therapeutic avenues, making SOD2 and mitochondrial superoxide promising targets for effective LBP interventions.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Superóxido Dismutasa , Humanos , Ratones , Animales , Superóxidos/metabolismo , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Homeostasis
2.
Eur Spine J ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416190

RESUMEN

PURPOSE: To investigate the therapeutic potential of extracellular vesicles (EVs) derived from human nucleus pulposus cells (NPCs), with a specific emphasis on Tie2-enhanced NPCs, compared to EVs derived from human bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a coccygeal intervertebral disc degeneration (IDD) rat model. METHODS: EVs were isolated from healthy human NPCs cultured under standard (NPCSTD-EVs) and Tie2-enhancing (NPCTie2+-EVs) conditions. EVs were characterized, and their potential was assessed in vitro on degenerative NPCs in terms of cell proliferation and senescence, with or without 10 ng/mL interleukin (IL)-1ß. Thereafter, 16 Sprague-Dawley rats underwent annular puncture of three contiguous coccygeal discs to develop IDD. Phosphate-buffered saline, NPCSTD-EVs, NPCTie2+-EVs, or BM-MSC-derived EVs were injected into injured discs, and animals were followed for 12 weeks until sacrifice. Behavioral tests, radiographic disc height index (DHI) measurements, evaluation of pain biomarkers, and histological analyses were performed to assess the outcomes of injected EVs. RESULTS: NPC-derived EVs exhibited the typical exosomal morphology and were efficiently internalized by degenerative NPCs, enhancing cell proliferation, and reducing senescence. In vivo, a single injection of NPC-derived EVs preserved DHI, attenuated degenerative changes, and notably reduced mechanical hypersensitivity. MSC-derived EVs showed marginal improvements over sham controls across all measured outcomes. CONCLUSION: Our results underscore the regenerative potential of young NPC-derived EVs, particularly NPCTie2+-EVs, surpassing MSC-derived counterparts. These findings raise questions about the validity of MSCs as both EV sources and cellular therapeutics against IDD. The study emphasizes the critical influence of cell type, source, and culture conditions in EV-based therapeutics.

3.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069038

RESUMEN

The angiopoietin-1 receptor (Tie2) marks specific nucleus pulposus (NP) progenitor cells, shows a rapid decline during aging and intervertebral disc degeneration, and has thus sparked interest in its utilization as a regenerative agent against disc degeneration. However, the challenge of maintaining and expanding these progenitor cells in vitro has been a significant hurdle. In this study, we investigated the potential of laminin-511 to sustain Tie2+ NP progenitor cells in vitro. We isolated cells from human NP tissue (n = 5) and cultured them for 6 days on either standard (Non-coat) or iMatrix-511 (laminin-511 product)-coated (Lami-coat) dishes. We assessed these cells for their proliferative capacity, activation of Erk1/2 and Akt pathways, as well as the expression of cell surface markers such as Tie2, GD2, and CD24. To gauge their regenerative potential, we examined their extracellular matrix (ECM) production capacity (intracellular type II collagen (Col2) and proteoglycans (PG)) and their ability to form spherical colonies within methylcellulose hydrogels. Lami-coat significantly enhanced cell proliferation rates and increased Tie2 expression, resulting in a 7.9-fold increase in Tie2-expressing cell yields. Moreover, the overall proportion of cells positive for Tie2 also increased 2.7-fold. Notably, the Col2 positivity rate was significantly higher on laminin-coated plates (Non-coat: 10.24% (±1.7%) versus Lami-coat: 26.2% (±7.5%), p = 0.010), and the ability to form spherical colonies also showed a significant improvement (Non-coat: 40.7 (±8.8)/1000 cells versus Lami-coat: 70.53 (±18.0)/1000 cells, p = 0.016). These findings demonstrate that Lami-coat enhances the potential of NP cells, as indicated by improved colony formation and proliferative characteristics. This highlights the potential of laminin-coating in maintaining the NP progenitor cell phenotype in culture, thereby supporting their translation into prospective clinical cell-transplantation products.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Disco Intervertebral/metabolismo , Estudios Prospectivos , Células Madre/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Laminina/farmacología , Laminina/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...